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A B S T R A C T

We report an ab initio and model potential investigation of elastic and rotational excitation cross sections for
positron impact with Li2 molecule in the energy range from 0.1 to 10.0 eV. The ab initio cross sections were
calculated with the Schwinger Multichannel Method, while the model potential calculations were performed
with the Method of Continued Fractions, applying the correlation–polarization interaction known as PCOP. The
converged elastic cross sections suggest a spherical polarizability for Li2 between 150 and 160 a0

3, a value
considerably lower than the experimental one (≈216 a0

3). Rotational excitation cross sections obtained corro-
borate previous results available, with some discrepancy for the quadrupolar transition for energies below 3 eV.
Our results indicate that such divergence comes from the consideration of a correlation-potential properly de-
signed to treat positron-molecule scattering.

1. Introduction and motivation

Positrons have an interesting role in condensed matter physics [1].
For example, the development of slow positron beams is historically
related to the study of moderators [2] as also to the annihilation dy-
namics in different condensed matter environments [3]. The compar-
ison between the electron and positron processes, like energy deposi-
tion and penetration depth constitutes a theme of investigation [4,5]
where interesting physics can be learned and tested. In the same
fashion, the study of metallic clusters offers a very special environment
to study strongly correlated systems. The bonding process, the geo-
metry and the appearance of “magic numbers” are examples of inter-
esting phenomena under intense investigation nowadays [6].

Among many atomic species, lithium sounds as an attractive system
to be investigated theoretically because it is the lightest metallic ele-
ment and it has a single s valence electron. Between the atomic and
cluster structure, we find the Li2 molecule, which usually is experi-
mentally manipulated in the gas phase.

Li2 is a system with several peculiar characteristics. For example,
the internuclear distance in the equilibrium geometry is 5.05 a0 [7], a
value expressively larger than the one found for H2 (1.400 a0) and N2

(2.068 a0). Also, the static dipole polarizability of Li2 (140–270 a0
3)

presents a considerable magnitude when compared to the corre-
sponding ones for H2 (5.4 a0

3) and N2 (11.4 a0
3).

Beyond the particular molecular characteristics, Li2 is a system that
invites for a theoretical investigation in the context of positron scat-
tering, mainly in the low energy region. For Li2, the inelastic electronic

thresholds are open at relatively small energies when compared to other
similar systems. For example, the ionization potential of Li2 is
≈4.94 eV. It means that positronium formation channel is present even
when positrons reach the molecule with zero energy. The first threshold
for electronic excitation, which corresponds to the channel 1Σg→

1Σu, is
of the order of 1.8 eV ([8], Table 3). To make things more interesting,
the threshold for vibrational transition = → =v v0 1 is about 0.04 eV.
So we have a molecular system where the inelastic components, elec-
tronic and nuclear, are present for impact energies as small as ≈1 eV,
such that, a rigorous investigation about the positron-Li2 scattering
should take into account all these collision channels and its couplings.

As far as we know, the only existing calculation for positron-Li2 is
the one performed by [9]. They have used the Lab-Frame Close-Cou-
pling (LFCC) approximation with a model potential to calculate elastic
and rotational cross sections. In that work, the positronium formation,
the electronic and the vibrational excitations were fully disregarded.

It is a common practice in the field of electron and positron scat-
tering by molecules to develop a systematic investigation of a given
system, considering increasing levels of sophistication in order to un-
derstand how the inclusion of inelastic channels affect the dominant
elastic cross section. Let us consider, for example, the study of positron
scattering by Li atom, the atomic counterpart of Li2 molecule.

The first set of works about positron-Li scattering was developed
along the 70s and 80s [10–12]. These initial initiatives were focused in
the calculation of the elastic cross sections, the main concern being to
go beyond the static approximation, i.e., taking into account the target
polarization effects. Only in the 90s, due to the improvement of the
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computational facilities, the first cross sections generated with close-
coupling scattering models appeared in literature [13–15]. Those were
the first set of calculations that included the positronium formation
channel. Several models and different levels of approximations have
been tested. In the present days, considerable progress exists in the
determination of the positronium formation cross section in low energy
positron-Li collisions [16] but its effect over the elastic channel is still a
matter of discussion. We find interesting to observe that Watts and
Humberston [17,18], working with the Kohn variational method and
performing calculations for energies below the first electronic excita-
tion threshold (1.84 eV) of the Li atom, have found an infinite posi-
tronium formation cross section at zero energy. The important result to
us here is that, in this sophisticated model, the elastic cross section was
practically unaffected by the coupling with the positronium channel.

In order to study the effect of the inelastic collisional channels over
the elastic cross section, we should perform a complete calculation in-
volving all states. However, it is necessary to first determine the elastic
cross section in a reliable way.

In this work, we calculate the elastic positron-Li2 cross section
comparing two independent methodologies. The first one is the ab initio
many-body Schwinger Multichannel Method (SMC) [19]. The second
one is the single-body Positron Correlation-Polarization Potential
(PCOP) of [20]. The model potential calculations were performed with
the Method of Continued Fractions (MCF) [21]. In both cases only the
elastic channel was considered in the computation of the respective T
matrices. The elastic cross section was determined from the con-
vergence between the results obtained with these two different meth-
odologies. Such strategy to determine elastic cross sections has been
successfully applied before by our group, as in the case of positron-N2O
[22] and positron-H2O [23] investigations. In other words, in the lack
of any experimental data, this is the elastic cross section we recommend
for this molecule until the present moment.

This paper is organized as follows: in Section 2, we discuss the es-
sential points about the methodologies used to compute the cross sec-
tions, with focus in the description of the criteria adopted to construct
the trial scattering basis sets used in this work. In Section 3 we present
our results and finally, in Section 4, we state our conclusions.

2. Methodology

2.1. Model potential calculation

As previously cited, the only work found on positron scattering by
Li2 in the low energy regime is the one of [9]. These authors calculated
the cross sections within the LFCC formulation using the molecular
wavefunction of [24] and the correlation-polarization (CP) potential of
[25] (PZ). Other models for CP potentials have been proposed (see
[26–28]). Among them, the PCOP proposed by [20] (from the positron-
electron correlation energy presented by [29]) has been applied with
considerable success.

Firstly, we calculated the elastic scattering cross section through the
MCF using the PCOP in the same way as [30]. Details about MCF and its
application to positron-molecule scattering can be found in that re-
ference. Here, we limit ourselves to say that it is an iterative method
that calculates the scattering of a single particle by a given potential

→V r( ). Since the original work of [9], advances have been made in the
development of Gaussian basis sets to generate accurate molecular
wavefunctions. Among many possibilities, we decided to work with the
Gaussian basis set provided by [31], specially constructed to better
represent electronic correlation effects.

Fig. 1 presents the spherical component of the positron-molecule
interaction potential. The dashed-dotted line is the static potential ob-
tained by us, which it is very similar to the one presented by [9]. The
double-dashed-dotted and dashed-double-dotted lines are the CP po-
tentials of PZ and PCOP, respectively. Curves dashed (PZ) and solid

(PCOP) are the total interaction (static plus CP) for each of CP poten-
tials. From this figure, we see that for values of radial coordinate above
≈6 a0 (cutoff radius) the full interaction potentials provided by both CP
models are very similar. From the cutoff radius towards the molecular
center, the CP potentials become rather different.

As one may observe, in Fig. 1, the correlation component of the
PCOP (Vcp-pcop) has a different shape when compared to the PZ one (Vcp-

pz). Also, Vcp-pcop has a magnitude comparable to the static potential.
This is not observed in other molecules such as H2 and N2 [30]. As a
consequence, the potential becomes more attractive at the molecular
border and the positron penetrates deeper into the molecular field. It
indicates that in Li2 the description of the correlation is central to
produce reliable cross sections. Finally, we note that the scattering
potential does have a large range. From this, one may expect that this
feature produces cross sections of expressive magnitude.

2.1.1. Adiabatic rotational approximation in the method of continued
fractions

In order to compare our results to the ones reported by [9], we
adapted the MCF to compute the rotational cross sections within the
Adiabatic Rotational Approximation (ARA) [32,33]. Here we follow the
same implementation presented in [34] and only a brief overview is
given.

The main result of a MCF calculation is the K-matrix in body-frame,
in the angular momentum representation: K(l, m;l′, m′). From the K-
matrix the corresponding T-matrix is obtained through:

∑= − − −T
π

K2 [(1 i K) ] [ ]l m
l m

l m
l m
l m

l m
l m1

f f
i i

f f
i i

(1)
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→ →
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→ →

T T k k[ ; ]f i . From the T-matrix, the corre-
sponding rotational cross section is calculated by
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where the C′s are the usual Clebsch–Gordan (CG) coefficients, kf and ki
are the absolute value of the final and initial positron wave vectors, Jf
and Ji are the final and initial rotational states of the molecule and the
amplitude coefficients fl m

l m
f
i are connected to the T matrix ones by:

Fig. 1. Spherical component of the positron-Li2 potential as a function of the
positron distance to the center of the molecule. The solid line represents the
total interaction in the static plus polarization approximation with PCOP; the
dashed line is the same as solid one but for PZ potential; the dash-dotted curve
is the static potential; the dash-double-dotted line is the PCOP; double-dashed-
dotted one is the PZ-CP potential used by [9].
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2.2. Ab initio calculations

The ab initio calculations were performed with the Schwinger
Multichannel Method (SMC) [19]. In this method, the variational ex-
pression for the scattering amplitude is given by:

∑→ →
= − → − →f k k

π
S V χ d χ V S[ , ] 1

2
| | ( ) | |f i k m n km n

1
mnf i (4)

where

= + − +d χ QHQ V χ|PVP ˆ VG | .m P nmn
( ) (5)

In the expressions above →S k is a solution of the unperturbed Hamilto-
nian (molecular Hamiltonian plus the kinetic energy operator for the
incident positron), P and Q are projectors onto energetically open and
closed states of the target, V is the scattering potential, Ĥ is the total
energy minus the scattering Hamiltonian, +GP

( ) is the projected Green's
function and {χm≡μ ν} are the (N+1)-particle trial scattering functions
which have the form

= → × →
≡χ r φ xΦ ( ) ( )m μν μ j ν (6)

with →rΦ ( )μ j and →φ x( )ν being the μth state of the target and the νth
positron scattering orbital respectively.

The ground state target wavefunction →rΦ ( )j0 is a Restricted
Hartree–Fock (RHF) one obtained from a Self Consistent Field (SCF)
calculation. As usual, the molecular orbitals are formed by linear
combination of atomic orbitals, in this case, Cartesian–Gaussian func-
tions (CGF's). The set of positron scattering orbitals →φ x{ ( )}ν is taken as
the set of occupied and virtual orbitals generated in the SCF calculation.

If we turn-off the QHQˆ and + VVGP
( ) terms in Eq. (5), the SMC

scattering amplitude becomes similar to the one computed in the first
Born approximation (FBA), i.e., fSMC≈ fFBA under the condition that
∑ ≈χ χ 1̂m m m . In this case the SMC scattering amplitude reduces to
what is called the Basis Set Born Approximation (BSBA).

2.2.1. Gaussian basis sets selection
The cross sections computed with SMC depend on the initial set of

CGF's used to describe the target wavefunction and the positron scat-
tering orbitals. Here, we used the same criteria adopted in the article of
[34]. These are:

1. ≈Z Zeff
BSBA : when the annihilation parameter Zeff is computed con-

sidering a scattering basis set expansion that mimics the first Born
approximation (FBA) we must find ≈Z Zeff

BSBA , where Z is the
number of electrons of the target [35–37];

2. σk≈ σ3dk: the cross sections must be converged when compared to
the method used to compute the Green's function matrix elements

(k-insertion and 3dk-insertion methods) [38].

The calculation of the Green's function has shown to be a challen-
ging point along the development of the SMC method. Briefly, the
original technique to compute it was founded in the spectral decom-
position of a plane wave in a CGF basis:

∑→
=

→
k α α k ,

α (7)

where the {|α> }'s were the own CGF's used to describe the molecular
target. Analysis of the unitary property of the S matrix suggested that,
even after the insertion of a huge number of CGF's, completeness was
still questionable. To overcome such difficulty, an hybrid approach was
considered, where the residue component was computed numerically
and the principal value was still calculated using the α-insertion pro-
cedure. This technique is known as the k-insertion method, and the
cross section computed within such implementation are here called σk.
As observed in [38], considering the numerical calculation of both re-
sidue and principal value terms, introduced the independence of spec-
tral decomposition of the plane wave. Cross sections computed within
this approach are called σ3dk. It is possible to demonstrate that when
σk≈ σ3dk we have, in fact, completeness in the CGF (∑ ≈α α 1̂α ) and
in the trial scattering basis set (∑ ≈χ χ 1̂m m m ).

Fig. 2 shows the typical integral and differential elastic cross sec-
tions obtained considering the criteria listed above. It is important to
highlight that we demanded the σk≈ σ3dk convergence to be respected
in the static (ST) and static plus polarization approximations (SP). We
easily see from this figure that within the limitation of each Gaussian
basis set, the cross sections reported here are the best results SMC can
produce within this implementation and the criteria here adopted.

Before presenting our results, we state that all basis sets associated
to SMC calculations provide satisfactory values for the total energy
when compared to the Hartree–Fock limit reported by Jensen [39]. We
also only consider the basis sets which gives a satisfactory description of
the quadrupole moment Q, for which the values varies from≈8 to≈11
ea0

2 [40], and of the dipole polarizability α0, for which the value varies
from ≈140a0

3 [41] up to ≈270a0
3 [42].

3. Results and discussion

Fig. 3 shows our results for the elastic cross sections. The dashed
line is the cross section calculated with the PCOP using the basis of [31]
while the double dotted-dashed line are the data of [9] obtained within
the LFCC formulation with the PZ-CP. Both exhibit the typical behavior
of a positron-molecule elastic cross section in the low energy domain.
The PCOP cross section have the same energy dependence found in
LFCC, but with a systematic larger magnitude for all energies. These
two cross sections are the ones that come from model potential calcu-
lations.

In order to find a recommended positron-Li2 elastic cross section

Fig. 2. Left: Integral cross sections for basis
B (see Section 3) calculated by SMC. Static
approximation (ST): dotted line with tri-
angles for 3dk insertion and dotted line
with squares for k insertion. Static plus
polarization approximation (SP): solid line
with triangles for 3dk insertion and solid
line with squares for k insertion. Right:
same as left, but for differential cross sec-
tion for 1 eV.
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from an ab initio approach, we firstly tried to calculate it with [31] basis
in the same way as performed with PCOP. This basis is composed by
156 Gaussian functions. It is a huge number for our computation cap-
abilities and it took several weeks to produce any results. Un-
fortunately, it contains several diffuse functions and these generated
spurious resonances in the elastic cross section. Even after removal of
trial scattering vectors from the variational basis [37] this kind of un-
desirable structures could not be removed. Because of that, the elastic
SMC cross section associated with this basis is not shown in Fig. 3.

One of the main conditions to obtain reliable cross sections within
SMC is the property of completeness of the scattering basis sets (∑m|χm〉
〈χm |≈ 1). Therefore, we decided to run a preliminary calculation with
modest sized basis sets. We elected the basis formed by Gaussians I, II
and IV given in Table 1 of the article of [8], originally applied to very
low energy electron-Li2 scattering. This basis set has 54 functions, a
small number that provided us the elastic cross section called basis A
and represented by the dotted line in Fig. 3. As one may observe, it
presents a magnitude much larger than the ones obtained by model
potential calculations. The structures from 1 up to 8 eV does not present
the typical shape of an elastic positron-molecule cross section. It is
important to state that the results reported for this basis were treated in
the same fashion as described in [37], i.e, spurious trial scattering
vectors were removed until the criteria given in Section 2.2.1 were
satisfied. In this scenario, in spite of satisfying the criteria mentioned in
Section 2.2.1, this basis set seems to be not complete.

We then decided to amplify the number of Gaussian functions used
in the basis, but still keeping a manageable size to produce results in a
reasonable time. Inspired in the basis reported by [8], we developed
basis B. Essentially, the same set of Gaussian exponents used to re-
present the Li atom were used (but now, all of them uncontracted). [8]
call attention to the fact that when trying to model electron-Li2 colli-
sions, the use of additional Gaussian functions at the chemical bond
(CB) improved the flexibility of the trial scattering wave function. This
idea was also previously observed by [43], who called attention to the
fact that Li2 resembles much more a molecule like CO2 than a familiar
diatomic like H2 or N2. The Gaussian functions used at the CB were
chosen in order to satisfy the criteria listed above. The elastic cross
section obtained with this basis is given by the dashed-dotted line in
Fig. 3. We immediately recognize that the results obtained with this
basis set are very similar to the PCOP ones for energies bellow ≈1 eV
and above ≈7 eV. The structure between 1 and 7 eV suggests that some
lack of correlation is still present in this basis.

Finally, we decided to work with different basis sets (not the ones
inspired in the work of [8]) keeping the total number of Gaussian basis

functions, but removing functions from the CB. We were able to find a
basis, which we call basis C, that fulfilled the criteria. The results ob-
tained with this basis set are presented in Fig. 3 by the solid line. We
observe that the elastic ab initio and model potential cross sections
become relatively well converged when such basis was considered. This
is the positron-Li2 elastic cross section we recommend for reference in
future works. It is important to observe that the convergence between
the elastic cross sections was achieved for α0= 150 a0

3 in the MCF
calculation, and α0= 160 a0

3 for SMC, a value considerably lower than
the experimental one reported by [44]. The basis sets used in this in-
vestigation are listed in the Appendix A.

Some comments must be done when comparing the elastic integral
cross section obtained by us when compared to the one reported by [9].
This last one was computed with a CP formulation originally developed
to treat electron-molecule scattering. Fig. 3 shows that our result has
similar energy dependence and magnitude slightly higher. In a given
sense it seems that using electron or positron CP model does not ap-
preciably affects the ICS. It is well known in literature that electron CP
potentials work reasonably well in the positron case for some systems.
This point was explicitly discussed in the articles of [27,45]. More
stringent tests, nonetheless, show that the apparent insensitivity of the
elastic ICS's, in fact, hide deficiencies in the description of the differ-
ential cross sections and annihilation rates. Indeed, those were the
motivations that leaded [45] to propose a genuine positron CP model,
i.e., the PCOP. It leads us to conjecture that the similarity between the
PZ and PCOP ICS's is more fortuitous than physical. Similar situation
has already been reported in literature. In [46] the positron-N2 elastic
ICS calculated with PCOP and ECOP (electron correlation-polarization
potential) provided alike elastic results, in spite of being generated from
very different potentials, as can be seen in Fig. 1 of that reference.

In Fig. 4 we present the rotational cross section associated to the
quadrupolar transition Ji=0→ Jf=2 computed in the ARA with the
PCOP compared to the previous calculation of [9]. These authors report
a structure around 0.5 eV which is not present in our results. Also, the
Ji=0→ Jf=2 cross section reported in the present work is higher in
magnitude than the corresponding LFCC results for positron energies
bellow 3 eV. Above this energy, we can see complete convergence be-
tween the two different approaches. In our calculations, the rotational
constant of Li2 molecule was taken as 8.1705× 10−5 eV.

The uncertainty principle tell us that there is a time τrot(j)

≈
+

τ j
j B

( ) 1
(4 6)rot

rot (8)

associated to quadrupole transitions (j→ j+2). The effective radius of
the quadrupole interaction can be estimated by:

Fig. 3. Elastic cross sections. Dotted line: SMC cross section for static plus po-
larization potential for basis A calculated through 3dk-insertion; Dash-dotted
line: the same, but for basis B; solid line: the same, but for basis C; dashed line:
results obtained with PCOP interaction model; dashed-double-dotted line: re-
sults reported by [9] with PZ correlation potential.

Fig. 4. Rotational excitation cross sections for the transition 0→ 2. Legends are
the same as in Fig. 3. The ARA-PCOP cross section becomes practically equal to
the LFCC-PZ for energies above ≈3 eV.
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≈E Q
R

,3 (9)

where Q is the molecular quadrupole moment. The crossing time as-
sociated to the effective radius of the quadrupole interaction is:

=t Q
E

1
2

.cross
1/3

5/6 (10)

The ARA is based on the idea that tcross/τrot(j)≪ 1. This leads us to the
following condition of application of the ARA:

≫ ⎛
⎝

+ ⎞
⎠

E
j

Q B
4 6

2
.1/3

rot

6/5

(11)

Since Brot is considerably small, the ARA is certainly valid for positron
energies greater than 0.1 eV for this molecule.

We find important to report that when choosing different para-
meters in the present model calculation, i.e., molecular polarizabilities,
we were not able to verify any similar structure as the one present in the
Ji=0→ Jf=2 cross section as seen in the LFCC calculation. This
suggests that the structure seen in the low energy 0→ 2 cross section
comes from the different treatment of the correlation effects.
Comparable situation has been registered by [46], regarding positron-
N2. These authors observed that the quadrupolar transition calculated
using positron and electron CP potentials (PCOP and ECOP) are quite
similar, the exception being towards low energies where the differences
become considerable (see Fig. 4 of such reference). This behavior is also
seen in Fig. 4 in the present work, and it justifies an investigation using
a proper positron CP potential.

Unfortunately, the calculation of the rotational cross sections is
much more delicate in SMC because it depends on the balance between
the p–p and s–d components of the scattering amplitude (see Table 1 of
[34]) The results obtained for the 0→ 2 transition with SMC were not
satisfactory and are not reported here.

Table 1 summarizes the total and rotational cross sections in a se-
lected set of energies, compared to those of [9]. We can see numerically
the convergence in higher energies between the cross sections listed,
with some discrepancies in lower energies as discussed before. We call

attention to the Ji=0→ Jf=4 transition cross sections, which are in a
reasonable agreement with the LFCC calculation, what suggests that the
hexadecapole component of both potentials are similar.

4. Conclusions

We calculated elastic and rotational excitation cross sections for
positron-Li2 scattering for energies below 10 eV. The elastic cross sec-
tion was computed with two independent approaches. The first one was
the ab initio variational Schwinger Multichannel method (SMC). The
second one was the single-body positron correlation-polarization po-
tential (PCOP). Higher magnitude and slightly similar energy depen-
dence were observed compared to the previous calculation of [9].

The elastic calculation shows that functions at the center of bond are
not a mandatory condition to produce reasonable cross sections, as
previously suggested in literature. In the same fashion, the values for
the spherical polarizability obtained with MCF and SMC suggest a value
of ≈150–160 a0

3, a value considerably lower than the experimental one
reported by [44].

The analysis of the rotational cross sections shows good agreement
for the quadrupolar transition for energies greater than ≈3 eV. The
divergence for lower energies comes from the use of a correlation-po-
larization potential properly developed to treat positron-molecule
scattering. The comparison between the hexadecapolar transition have
reasonable concordance with minor magnitude discrepancies.

We kindly suggest a future experimental verification of the positron
scattering cross section for this molecule, in order to stimulate theo-
retical work in systems with huge polarizabilities.
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Table 1
Total and rotational cross sections obtained within the PCOP approach compared to the data of [9] which adopted the PZ-CP. The cross sections are given in a0

2.

Energy (eV) σ0→0 σ0→2 σ0→4 σtot

PCOP PZ PCOP PZ PCOP PZ PCOP PZ

0.1 2618.8 1632.0 879.7 321.2 0.59 0.06 3501.3 1954.0
0.5 937.9 731.7 234.5 39.09 0.81 0.54 1173.2 777.3
1.0 596.0 344.3 114.9 82.56 1.26 0.92 712.2 427.8
2.0 358.4 200.7 62.99 52.78 2.30 1.48 423.7 254.9
3.0 252.3 127.9 45.86 43.16 2.67 1.86 300.8 172.9
6.0 129.6 64.2 28.64 30.26 2.90 2.65 161.2 97.12
8.0 95.29 47.46 23.96 25.85 3.00 2.81 122.4 76.30
10.0 73.51 38.49 20.80 22.80 3.06 2.90 97.60 64.19

Table 2
Cartesian-Gaussian basis set B used in SMC calculations. CB denotes center
of bond and it is situated at the origin of the coordinate system.

Center and type Exponent

Li, 9s 921.30000, 138.70000, 31.940000
9.3530000, 3.1580000, 1.1570000
0.4446000, 0.0766600, 0.0286400

Li, 4p 1.4880000, 0.2667000, 0.0720100
0.0237000

Li, 1d 0.2500000
CB, 2s 1.0000000, 0.02214942
CB, 2p 0.2000000, 0.00110747
CB, 6d 2.2500000, 0.77734266, 0.268560

0.0927838, 0.03205549, 0.011074
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Appendix A

In this appendix, we show the set of cartesian Gaussian functions used to construct the trial scattering basis sets in Tables 2 (basis B) and 3 (basis
C).
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