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Abstract
In this article we present the rotational excitation cross sections of N2 by positron impact for
energies between 1 and 10 eV. The cross sections were computed in the adiabatic rotational
approximation within the many-body formalism of the Schwinger multichannel method. Our
results show fortuitous agreement with previous rovibrational closed-coupling calculation and
are higher in magnitude when compared to other similar calculation performed within the rigid
rotor approximation. The convergence of static and static plus polarisation treatments suggests
that dependence of polarisation for hexadecapole transitions may be neglected.
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1. Introduction

Since the development of positron sources for experimental
manipulation [1–3], the positron interaction with atoms and
molecules has been a fascinating theme of investigation [4–9].
Among many atomic and molecular species, there is specific
interest in the comprehension of the positron cooling
dynamics in molecular nitrogen.

From the experimental point of view, N2 is a non-toxic
gas of easy acquisition and manipulation. In the theoretical
context, on the other side, N2 works, together with H2, as a
model system to test theories and approximations because of
its moderate number of electrons and a relatively simple
vibrational and rotational structure.

In 1970, Tao [10] presented experimental results for the
positron annihilation spectra as a function of nitrogen den-
sities. After, Coleman et al [11] and Griffith and Heyland [12]
measured the positron lifetime spectra for molecular nitrogen
at room temperature. In the same period, Sharma and McNutt
[13] presented results for the annihilation spectra at 77 K. All
these works verified that a significant amount of positrons,

originally created in the radioactive decay with energies of
order of keV’s [2, 14], survive to energies below the posi-
tronium formation threshold (≈10 eV). It became evident that
a satisfactory understanding of the experimental data,
demanded first a comprehension of the dynamics of positron
thermalisation in the gaseous system.

Below the positronium formation threshold, positrons
interacting with this gas cool by momentum transfer, vibra-
tional excitation and rotational excitation. The thermalisation
dynamics of positrons in molecular nitrogen was studied by
Coleman et al [15] using a simple slowing-down model.
These authors worked with energies below the first vibra-
tional threshold (≈0.290 eV). Effective rotational and
momentum transfer cross sections were inferred comparing
the cooling model with the measured annihilation time
spectrum.

The development of high resolution low energy positron
beams demanded the construction of an experimental appa-
ratus able to cool and to trap these particles. Murphy and
Surko [14] presented a modified Penning trap in what mole-
cular nitrogen was used as buffer-gas. Along the years this
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apparatus has been improved. For a good review on the state
of the art on this subject see Natisin et al [16]. The perfor-
mance of the positron trap has been modelled through
empirical formulations along the time. To develop a con-
sistent model of positron cooling in N2, the knowledge of the
vibrational and rotational cross sections is mandatory, mainly
toward low energies [17].

The research reported in this article is about how posi-
trons are able to make N2 molecules rotate. More modernly,
Natisin et al [18] measured the cooling curve of positrons
with initial temperatures of the order of ≈1200 K in N2 at
room temperature. In this scenario, practically all the mole-
cules are in the vibrational ground state, such that the
experimental data work as an indirect measure of the rota-
tional cross sections in the very low energy domain.

As far as we know, direct measurements of positron-N2

rotational cross sections are not available until today. None-
theless, the theme has attracted the attention of theorists
[19–21] since the 70s and, from time to time, improved cal-
culations were reported in literature. Of direct interest to us
here are the cross sections reported by Mukherjee et al [22],
del Valle and Gianturco [5] and Mukherjee and Mukherjee
[23]. In spite of using similar correlation-polarisation poten-
tials, the rotational cross sections reported by these authors
are significantly different in the energy region we consider
here. Motivated by this context, we understand that the
positron-N2 rotational cross sections are not well determined
and that a theoretical investigation with a different metho-
dology compared to the ones previously applied may con-
tribute significantly to the problem.

This article is organised as follows: in section 2, we
briefly present the methodology used to compute the rota-
tional cross sections; in section 3, the results obtained are
shown and discussed, and finally, in section 4, we state our
conclusions. Unless otherwise stated, we use atomic units.

2. Theoretical methods

The rotational cross sections presented here have been cal-
culated with the Schwinger multichannel method (SMC) [24]
combined with the adiabatic rotational approximation (ARA)
[25]. Details can be found in the article of Zanin et al [26],
therefore only the essential points are given here.

The effective expression used to compute the rotational
cross sections is
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where Ji and Jf are respectively the initial and final rotational
states, the C’s are the usual Clebsch–Gordan coefficients, kf

and ki are the final and initial positron momenta and
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The body-frame scattering amplitude
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[ ]f k k,BF
f i is ori-

ginally computed in the linear momentum representation
using the SMC [24]. In this method, the effective expression
used to calculate the body-frame scattering amplitude is:
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In these expressions, Sk is a solution of the unperturbed
Hamiltonian (molecular Hamiltonian plus the kinetic energy
operator for the incident positron), P and Q are projectors
onto energetically open and closed states of the target, V is the
scattering potential, Ĥ is the total energy minus the scattering
Hamiltonian, +( )GP is the projected Green’s function and
c mnº{ }m are the (N+1)-particle trial scattering functions
which have the form

c j= F ´mn m n=
 ( ) ( ) ( )r x 5m j

with Fm
( )rj being the μth state of the target and jn

( )x the νth
positron scattering orbital.

The ground state target wave function F
( )rj0 is a

restricted Hartree–Fock (RHF) one obtained from a self
consistent field (SCF) calculation. As usual, the molecular
orbitals are formed by linear combination of atomic orbitals,
in this case, Cartesian Gaussian functions (CGF). The set of
positron scattering orbitals jn

{ ( )}x is taken as the own set of
occupied and virtual orbitals generated in the SCF calculation.

Due to the nature of the ARA, it is expected that it
produces reliable results only above a certain energy. The
central idea of the ARA is that, if the time spent by the
projectile while crossing the target field is sufficiently small
compared to the time associated to rotational transitions (or
significant variations of the molecular orientation in space),
then the electronic and the rotational molecular degrees of
freedom can be decoupled in the scattering calculation.
Comparing the time taken by the positron to cross a region of
≈20 a0 (an overestimated value for the positron-N2 potential
range, see figure 4 of Tenfen et al [27]) to the classical period
of rotation of the N2 molecule or to the time uncertainty
associated to quadrupole transitions (Jf=Ji±2), we find
that the results provided by the ARA are certainly valid for
incident energies above 1 eV.

2.1. Computational details

The initial input used in a standard SMC calculation is a set of
CGF. This set is used to generate the molecular ground state
wave function and the excited determinants associated to the
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virtual target excitations. The ground zero criterion for
selection of a basis set is the description of selected molecular
properties. Of special relevance to the calculations are the
ground state energy, the quadrupole moment and the
polarisation.

Among many tested basis sets, we elected the one shown
in table 1 because it presented a reasonable description of the
molecular parameters and was also able to satisfy the condi-
tions for a good scattering calculation, to be described in
subsection basis set validation.

The ground state wave function of the target was calcu-
lated in the equilibrium geometry configuration (RNN=
2.068 a0), using the RHF approximation. The energy obtained
in a SCF calculation was −108.969 954 Hartrees. For scat-
tering calculations, the description of the molecular charge
distribution and how it responds to an external electric field
are major points to be considered. These characteristics are
incorporated by the quadrupole moment (Q) and the polar-
izability tensor components (α0 and α2), the last one receiving
special attention in what concerns the internuclear separation
dependence in the work of Temkin [29]. Tables 2 and 3 show
the values obtained for these quantities with the basis set
given in table 1. The values obtained for the quadrupole
moment are comparable to the theoretical values reported by
the two-dimensional numerical Hartree–Fock calculation of
Sundholm et al [30] and the coupled-cluster singles and
doubles (CCSD) result of Halkier et al [31]. The value
obtained with basis 1 is ≈93% of the experimental value
furnished by Graham et al [32], a variation we find acceptable

taken the limitations of using a RHF molecular wave func-
tion. On the other hand, the components of the polarizability
tensor show good agreement with the CI calculation of
Langhoff et al [33]. A small difference is seen when we
compare the values obtained to the experimental results of
Bridge and Buckingham [34]. In spite of that, however, we
consider this discrepancy tolerable for scattering calculations.

These two properties are of special attention because they
are directly connected to the asymptotic form of the
positron-N2 scattering potential:

q
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where x is the positron position and the θ is angle between the
positron coordinate and the internuclear axis (see Morrison
and Hay [35] and Morrison et al [36]). Note that only the
parallel polarisability a a a q= + P coszz 0 2 2 (the relations of
the polarisability tensor can be found in reference [37])
contributes to the polarisation potential, the derivation of such
component is given in appendix A. A description of the
potential at the molecular border is an important ingredient in
a rotational excitation calculation because, intuitively, it is
expected that incident positrons with higher angular
momenta, and consequently higher impact parameters, will
transmit angular momentum to the molecule more effectively.

3. Results and discussions

We start with the validation of the CGF set used to compute
the rotational excitation cross sections. After that, we present
our results for the rotational cross sections and compare them
to the ones previously reported by other authors.

Table 1. Cartesian Gaussian basis set used in this work. The basis set
was taken from Neto et al [28]. Its original structure is 5s3p2d. For
scattering, one p and one d functions were added.

Type Exponent Contraction coefficient

s 6711.76 0.001984
1029.56 0.014862
234.625 0.076129
65.0861 0.286645
20.6813 0.710844

s 7.35948 0.761736
2.86133 0.268284

s 0.75772 1.000000
s 0.22278 1.000000
s 0.05511 1.000000

p 26.9531 0.018562
6.01778 0.116576
1.76063 0.381643
0.56065 0.641238

p 0.17526 1.000000
p 0.04764 1.000000
p 0.02970 1.000000

d 0.89591 1.000000
d 0.24164 1.000000
d 0.09044 1.000000

Table 2. Quadrupole moments of the CGF basis set given in table 1
compared to other experimental and theoretical values. The
experimental value is the one reported by Graham et al [32]. The
theoretical values are the ones given by the two-dimensional
numerical Hartree–Fock calculation of Sundholm et al [30] and the
CCSD calculation of Halkier et al [31].

References Quadrupole moment (ea0
2)

Basis 1 −0.967
Expt [32] −1.03±0.02
Theory-numerical HF [30] −0.940
Theory-CCSD [31] −1.12±0.02

Table 3. Polarizability of the CGF basis set compared to other
experimental and theoretical values. The theoretical are from a CI
calculation of Langhoff et al [33] while the experimental are those
reported by Bridge and Buckingham [34].

References α0 ( )a0
3 α2 ( )a0

3

Basis 1 11.48 3.47
Expt [34] 11.92 3.13
Theory—CI [33] 11.52 3.16
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3.1. Basis set validation

An important point to consider when we analyse results from
ab initio methods like SMC, is that, even though a CGF set is
able to describe the molecular properties, it does not imply
that it will also be an adequate basis set for scattering. It
happens because the same molecular orbitals used to repre-
sent the molecule are also used to represent the positron
scattering orbitals (see equation (5)). From the point of view
of calculation of matrix elements and computational imple-
mentation it is a convenient choice. However, it may lead to
several pathological linear dependencies. Due to this peculiar
characteristic, we have adopted the same criteria used in
Zanin et al [26]. For the sake of completeness, we repeat then
in brief form here:

(I) Zeff
BSBA≈Z. Briefly, when the annihilation parameter Zeff

is computed considering a scattering basis set expansion
that mimics the first Born approximation (known as the
Basis Set Born Approximation), it must give values
close to the number Z of electrons of the mole-
cule [38, 39].

(II) σ k≈σ3 dk. The cross sections must be converged in
relation to the method used to compute the Green’s
function matrix elements: σ k and σ3 dk denote cross
sections computed with the k-insertion and 3dk-
insertion methods respectively [40].

In figure 1, we show the integral cross section (ICS)
for transitions Ji=0→Jf=2 (quadrupole) and Ji=
0→Jf=4 (hexadecapole), from now on simply denoted by
0→2 and 0→4, in the static (ST) and static plus polar-
isation (SP) approximations. The ICS associated to the
quadrupole transition calculated in the SP approximation
presents a higher magnitude than the corresponding one
computed in the ST approximation for all energies. Such
behaviour comes from the negative value of the quadrupole
moment of the N2 molecule (see table 2). In this situation, the

Q and α2 terms present at the molecular edge interfere
constructively.

The ICS for the hexadecapole transition, on the other
hand, has a very interesting peculiarity: it is practically the
same computed considering or not the correlation-polarisation
effects. As the own name suggests, this cross section is
associated to the hexadecapole moment that comes primarily
from the static potential. As we discuss at the end of the next
subsection, the small discrepancies observed between the ST
and SP calculations can be explained by the non-significant
presence of terms of the form q( )P cos4 in the correlation-
polarisation potential and, in the same way, by the different
scattering wave functions generated in each of these
approximations.

The convergence σ k≈σ3 dk is evident and was used as a
final criterion to choose the basis given in table 1.

3.2. Rotational cross sections

The measurement of rotational cross sections is still an open
theme in the positron field, which it means that there are no
experimental data for direct comparison with theory. In this
circumstance, we compare our results with the theoretical
works of Mukherjee et al [22], del Valle and Gianturco [5]
and the more recent results of Mukherjee and Mukherjee [23].
The reason to do so is that it permits to analyse how the SMC-
ARA cross sections compare to the close-coupling-model-
potential results and, at the same time, to visualise the whole
picture of the positron-N2 rotational cross sections for ener-
gies just below the positronium formation threshold.

To model rotational cross sections, it is important to keep
in mind that two ingredients are always present and have
direct influence in the final results obtained. These are:

(i) the representation of the positron–molecule interaction;
(ii) the coupling between the vibrational and rotational

states of the target.

In the close-coupling calculations with which we com-
pare, the positron–molecule interaction is written as a single-
body effective potential, given by the superposition of a static( )V xst and a correlation-polarisation component

( )V xcp known
as PCOP [41, 42]. In this approach,

( )V xcp is given by


q=

= - -a a





⎪

⎪

⎧
⎨
⎩( )

( )
( ) ( ) ( )V x

V x x r

V x P x rcos .
7cp

corr c

pol x x c2 2 2
0
4

2
4

In practice,
( )V xcorr describes the positron–molecule interac-

tion when the positron is inside the molecular cloud. It is
derived from the correlation energy of a positron in a
homogeneous electron gas as described in density functional
theory [43]. Explicit expressions for

( )V xcorr can be found in
the articles of Mukherjee et al [22] and Gianturco et al [44].(V xpol ), as described earlier, is the polarisation component
associated to the asymptotic form of the positron–molecule
scattering potential (see equation (6)); rc is a cut-off radius,
defined by the value of the radial coordinate where

( )V xcorr

and
( )V xpol cross for the first time and it connects both

components of
( )V xcp .

Figure 1. Convergence of k-insertion (σ k) and 3dk-insertion (σ3 dk)
rotational excitation cross sections for transitions 0→2 and 0→4
in the static (ST) and static plus polarisation (SP) approximations.
Legends are: dashed lines, static; full line: static plus polarisation;
squares: σ k; triangles: σ3 dk.
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In SMC, on the other side, except in the static approx-
imation, the potential cannot be expressed as a simple single-
body expression. In fact, it is the coupling between the
potential and the trial vectors of the closed Q space, used to
expand the scattering wave function, that in practice gives rise
to the correlation-polarisation effects.

The coupling between the rotational states is taken since
the start in the close-coupling formulations, making this
aspect of the problem more precise in such models. The
single-body effective potential that scatters the positron is
expanded in a basis that, in principle, couple the vibrational
(v) and rotational states of the molecule ( j) with the angular
momentum states of the positron (l): á ¢ ¢ ¢   ñ

 
∣ ( )∣v j l V x R v j l, .

The dynamical coupling effect appears in solving the coupled
differential equations where the solution of a particular
channel depends on the influence of other channels.

In the methodology we considered here (SMC+ARA), the
scattering amplitude (equation (3)) is calculated in the fixed-
nuclei approximation, without considering any kind of cou-
pling between the vibrational and rotational states of the target.
Then, using the ARA, an effective expression to compute the
rotational cross sections is derived, considering that the elec-
tronic and rotational states of the target are fully decoupled, a
picture physically justifiable for ‘high energy’ positrons.

In figure 2 we show the 0→2 excitation cross section.
The dashed and the solid lines are the ST and the SP polar-
isation results obtained in this work respectively. The dotted
line is the result of Mukherjee et al [22] generated with a lab-
frame close-coupling (LFCC) calculation. The solid line with
circles is the result reported by del Valle and Gianturco with
the space frame-rotational close-coupling (SF-RCC) [5] while
the full line with diamonds is the cross section of Mukherjee
and Mukherjee [23] considering a rovibrational close-
coupling (RVCC) formulation. The dotted–dashed line is a
calculation performed with the method of continued fractions
(MCF) [27, 45] combining the PCOP with ARA. The LFCC

and SF-RCC results were calculated in the rigid-rotor
approximation, which means that the vibrational states v(R)
are simply not considered in the expansion of the scattering
potential.

From figure 2, we immediately recognise that three pre-
vious different calculations performed with PCOP provide
three different quadrupole rotational cross sections. The dis-
crepancies between the rigid rotor calculations (LFCC and
SF-RCC) can be explained by the different parameters used in
the expansion of the potential and also by the different radial
grids considered for integration. For example, in the LFCC
calculation, the authors considered rotational states from
j=0 to j=10 in the expansion of the scattering potential,
but the equations were solved up to a total angular momentum
Jmax=12 ( = +

  
J l j ). The SF-RCC results, on the other

hand, were performed with a more complete expansion, the
multipolar coefficients of the potential expansion going to
λmax=26 and a maximum partial wave angular momenta for
the scattering positron of lmax=33.

As stated previously, of paramount relevance for the
description of the 0→0 and 0→2 cross sections are,
respectively, the values of α0 and α2 considered. Mukherjee
et al [22] used α0=11.74 a0

3 and α2=3.17 a0
3, values

slightly different from the ones considered here (see table 3).
Different choices of α0 and α2 affect the determination of the
cut-off radius rc (there is a cut-off radius for the spherical and
another one for the anisotropic component of the potential),
affecting the level of contribution of the correlation and
generating different potentials for each set of parameters. The
agreement between the SF-RCC and the static SMC+ARA
0→2 cross sections, mainly towards lower energies, sug-
gests that the description of the polarisation used by these
authors was unsatisfactory, or that, by some reason, the value
used for the cut-off radius killed the contribution of the cor-
relation-polarisation component, generating a potential prac-
tically equal to the static one.

Recently Mukherjee and Mukherjee [23] improved the
LFCC model incorporating the vibrational states of the target in
the expansion of the scattering potential. Our results apparently
resemble the RVCC model of Mukherjee and Mukherjee [23]
until 3 eV (higher energies are not reported). Such agreement
seems strange due to the very different nature of the models. In
our calculation, the correlation-polarisation effects comes from
an ab initio description and the rotational dynamics is regarded
from the combination of rigid rotor and adiabatic approxima-
tions. In the work of Mukherjee and Mukherjee [23], the
correlation-polarisation effects are taken from a model potential
approach and the vibrational and rotational dynamics are taken
in full. Since several factors influence the behaviour and
magnitude of the rotational cross sections, we performed the
PCOP+ARA calculation, represented by the dashed–dotted
line in figure 2, considering the basis set given in table 1.
Under such conditions, the same molecular parameters (quad-
rupole and polarizability) and static components of the scat-
tering potential are considered in both calculations. We see
from figure 2, that the SMC cross section is systematically
higher in magnitude and both have the same energy

Figure 2. Comparison with other calculations for rotational transition
0→2. The legends are: solid line and dashed line, SP and ST of
SMC; dashed–dotted line our PCOP calculation; solid line with
circles, del Valle [5]; dotted line, Mukherjee et al [22] and solid line
with diamonds, Mukherjee and Mukherjee [23]. Our results are
summarized in table C1 of Appendix C.

5

J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 205201 M V Barp et al



dependency. It means that the difference between these rota-
tional cross sections comes from the description of the corre-
lation component of the interaction potential. This suggests that
the incorporation of vibrational dynamics in the SMC calcul-
ation would also raise the magnitude of the rotational cross
section. The magnitude of the effect is, of course, a theme for
further investigation. At this moment, we can say that the
apparent agreement with the RVCC results of Mukherjee and
Mukherjee [23] is, in practice, fortuitous.

Finally, in figure 3 we present 0→4 cross sections
obtained in this work and compare to LFCC [22] and SF-
RCC [5] scattering models. Results for this transition were not
reported in the RVCC model. Hexadecapole transitions
depends, mainly, on terms of the form q( )P cos4 in the
potential. The convergence between the ST and SP calcula-
tions just reinforce the fact that the magnitude of these terms
is practically negligible in the correlation-polarisation poten-
tial. Some small discrepancies are expected, because the
scattering wave function varies with the approximation used
to compute the rotational cross section. In fact, we can easily
visualise that there is no agreement between any of the dif-
ferent scattering models. In spite of the smaller magnitude
associated to the hexadecapole cross section, this result sim-
ply shows that the situation about positron-N2 rotational cross
sections is far from being clarified.

Results for this transition were not reported in the RVCC
model, such that we can only compare the SMC+ARA ones
to the LFCC and the SF-RCC results. In fact, we can easily
visualise that there is no agreement between any of the dif-
ferent scattering models. In spite of the smaller magnitude
associated to the hexadecapole cross section, this result sim-
ply shows that the determination of the positron-N2 rotational
cross sections is far from being achieved.

4. Conclusion

The results reported in this article are, as far as we know, the
first positron-N2 rotational cross sections performed with an

ab initio interaction approach. Rotational dynamics is treated
within the rigid rotor and adiabatic approximations con-
sidering an ab initio correlation-polarisation potential.

The quadrupole transition exhibits fortuitous agreement
with the rovibrational cross section of RVCC and shows to be
higher when compared to other rigid rotor approximations.
After performing our own model potential calculation, setting
the same molecular parameters as SMC, we found that the
discrepancies with the rigid rotor models and the agreement
with the RVCC is explained through the difference in the
correlation effects of each method. For the hexadecapole
transition, the static and SP polarisation suggests that terms

qµ ( )P cos4 are negligible in the computation of such
transition.
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Appendix A. Asymptotic positron–molecule
scattering potential and parallel polarisability

In this appendix, we show that the asymptotic form of the
positron–molecule scattering potential is due to the parallel
component of the polarisability tensor (see equation (6)).

From the many-body formulation, the electrostatic
interaction between a positron and a diatomic homonuclear
molecule (like N2, H2, K) can be expressed in atomic units,
by

å å=
-

-
-

  
   ( )

∣ ∣ ∣ ∣
( )V x r R

x R x r
, ,

1
, A.1j A

A

A

A j j

where

x is the positron coordinate,


rj is the set of electronic

coordinates,

RA is the set of nuclear coordinates andA stands

for the atomic number.
Using the optical potential technique3, the Schrodinger

equation for a diatomic homonuclear molecule placed in the
field of a fixed positron at


x is

 + F = F
         

[ ( )] ( ) ( ) ( )
( )

V x r R x r R E x x r R, , , , , , ,

A.2
mol j A j A j A

where mol is the molecular Hamiltonian.
Asymptotically, as  ¥x , one can consider that the

solution of equation (A.2) is the unperturbed molecular
ground state wave function, i.e., F  F

    
( ) ( )x r R r R, , ,j A j A0

and 
( ) ( )E x E 0 , where E(0) is the ground state energy of the

molecule. In order to find the corrections on the energy, we

Figure 3. Comparison with other calculations for rotational transition
0→4. Our results are given in form of table in Appendix C, table
C2. Legends are the same as figure 2.

3 See section 12.2, equation (12).41, of [46].
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can apply perturbation theory. Therefore, up to second order,

= + +
  ( ) ( ) ( ) ( )( ) ( ) ( )E x E E x E x . A.30 1 2

Note that, from equation (A.1), the first-order correction

= áF F ñ
       

( ) ( )∣ ( )∣ ( ) ( )( )E x r R V x r R r R, , , , A.4j A j A j A
1

0 0

is the static interaction of a positron with the molecule.
The second-order correction is given by

å=
áF F ñ

-¹


      

( )
∣ ( )∣ ( ) ∣ ( ) ∣

( )

( )E x
r R V x r R r R

E E

, , , ,
.

A.5
N

j A j A N j A

N

2

0

0
2

0

We now pay attention to the term áF F ñ∣ ∣V N0 of
equation (A.5). Applying the multipole expansion in
equation (A.1), the potential is rewritten as

åå

åå-

l

l

l l

h

h

h h

¥

+

+

  
( ) ⟶ ( ˆ ˆ)

( ˆ ˆ) ( )

V x r R
R

x
P R x

r

x
P r x

, , .

. , A.6

j A
x

A
A

A
A

j

j
j

1

1

where Pλ and Pη are the Legendre polynomials with the
respective multipole expansion index. Then, from
equations (A.6) and áF F ñ∣ ∣V N0 of equation (A.5),


å

å

áF F ñ = áF

´ + +¼

- + + ¼ F ñ

 

 

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣ ( )∣

( ˆ ˆ)

( ˆ ˆ) ∣ ( ) ( )

V r R

x

R

x
P R x

x

r

x
P r x r R

,

.

1
. , . A.7

N j A

A

A
A

A
A

j

j
j N j A

0 0

2 1

2 1

Considering the orthonormality of the molecular states and
taking into account only the first non-vanishing term of the
multipole expansion we have,

å

å

áF F ñ= áF

- F ñ

 

 

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣ ( )∣ ( ˆ ˆ)

( ˆ ˆ) ∣ ( ) ( )

V r R
R

x
P R x

r

x
P r x r R

, .

. , . A.8

N j A
A

A
A

A

j

j
j N j A

0 0 2 1

2 1

Without loss of generality, we may consider the positron
along the ẑ axis, consequently

å

å

áF F ñ= áF

- F ñ

 

 

∣ ∣ ( )∣

∣ ( ) ( )

V
x

r R z

z r R

1
,

, . A.9

N j A
A

A A

j
j N j A

0 2 0

Note that å m- å =z z
A A A j j z is the dipole operator in the

many-body formulation4. Since the dipole polarisability is
given by

åa
m m

=
áF F ñáF F ñ

-¹

∣ ∣ ∣ ∣
( )

E E
2 , A.10ij

N

i N N j

N0

0 0

0

thereupon, from the second-order correction on the energy
(A.5) and the dipole polarisability (A.10), we identify that,

asymptotically,

a a a
q~ - = - - ( ) ( )V

x x x
P

2 2 2
cos , A.11pol

zz
4

0
4

2
4 2

the negative sign (attractive character of the polarisation
potential) comes from the fact that E0− EN<0. Hence, only
the parallel polarisability contributes to the asymptotic
potential.

Appendix B. Non-adiabatic and adiabatic
polarisabilities

In this appendix, we briefly discuss why we use adiabatic
polarisabilities, instead of non-adiabatic ones, in our
calculations.

The polarisability has been studied [48] adiabatically
(considering the Born–Oppenheimer approximation) and non-
adiabatically (taking into account the nuclear degrees of
freedom). Recently, the adiabatic and non-adiabatic (hyper)
polarisabilities have been investigated [49] for diatomic
systems.

The effects associated to the non-adiabatic polarisabilities
can be relevant mainly when the dependence with the inter-
nuclear separation is considered. This is mandatory to the
computation of vibrational cross sections and it may influence
the results, as demonstrated in [29] for electron-N2 scattering.
In fact, the difference of the adiabatic and non-adiabatic
treatments for vibrational cross sections of positron-N2 have
been evaluated [50]. As commented in the work of Tiihonen
et al [49], a complete non-adiabatic calculation is limited to
three particles only, thorough the Hylleraas basis
approach [51].

The rotational cross sections reported in this article
were performed in the Rigid Rotor combined to the ARA.
In ARA, the rotational and electronic degrees of freedom
are totally decoupled by virtue of the physical assumptions
involved and the input data is the fixed-nuclei scattering
amplitude. In SMC, the polarisabilities come from the
Gaussian basis set used to represent the target wave func-
tion, while in MCF-PCOP the polarisabilities are input
parameters. The polarisabilities provided by the basis set
used in SMC were used in the MCF-PCOP calculations in
order to clarify the influence over the rotational cross
sections for different values of the polarisation in both
models.

The majority of the models for electron-molecule or
positron–molecule scattering work in the Born–Oppenheimer
approximation. In this framework, the electronic and nuclear
degrees of freedom are decoupled. Therefore, it is natural to
use the adiabatic polarisabilities in the present calculations,
first for a question of consistence and coherence, and second,
because the comparison to the experimental values is rea-
sonable (see table 3).4 See section 2.3 of [47].
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Appendix C. Rotational cross sections results

This appendix presents the rotational cross sections calculated
with the methods SMC and MCF+PCOP in the form of tables.
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